首页 > 几何图形公式

全等三角形知识点总结

时间:2020-11-30 14:43:28

  (一)、基本概念

  1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;

  即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。

  2、全等三角形的性质

  (1)全等三角形对应边相等;(2)全等三角形对应角相等;

  3、全等三角形的判定方法

  (1)三边对应相等的两个三角形全等。

  (2)两角和它们的夹边对应相等的两个三角形全等。

  (3)两角和其中一角的对边对应相等的两个三角形全等。

  (4)两边和它们的夹角对应相等的两个三角形全等。

  (5)斜边和一条直角边对应相等的两个直角三角形全等。

  4、角平分线的性质及判定

  性质:角平分线上的点到这个角的两边的距离相等

  判定:到一个角的两边距离相等的点在这个角平分线上

  (二)灵活运用定理

  证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。运用定理证明三角形全等时要注意以下几点。

  1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

  2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

  3、要善于灵活选择适当的方法判定两个三角形全等。

  (1)已知条件中有两角对应相等,可找:

  ①夹边相等(ASA)②任一组等角的对边相等(AAS)

  (2)已知条件中有两边对应相等,可找

  ①夹角相等(SAS)②第三组边也相等(SSS)

  (3)已知条件中有一边一角对应相等,可找

  ①任一组角相等(AAS或ASA)②夹等角的另一组边相等(SAS)

 

载入中…
点这里查看与之相关的计算

.

条评论

昵称: 需审核请等待!

密码: 匿名发表

验证码:

载入中…

.

.
分享到: