.
简化 (x + -1)(x2 + -4) + 2(x + -1)(x + 2) = (x + -1) * P 重新排序条件: (-1 + x)(x2 + -4) + 2(x + -1)(x + 2) = (x + -1) * P 重新排序条件: (-1 + x)(-4 + x2) + 2(x + -1)(x + 2) = (x + -1) * P 乘以 (-1 + x) * (-4 + x2) (-1(-4 + x2) + x(-4 + x2)) + 2(x + -1)(x + 2) = (x + -1) * P ((-4 * -1 + x2 * -1) + x(-4 + x2)) + 2(x + -1)(x + 2) = (x + -1) * P ((4 + -1x2) + x(-4 + x2)) + 2(x + -1)(x + 2) = (x + -1) * P (4 + -1x2 + (-4 * x + x2 * x)) + 2(x + -1)(x + 2) = (x + -1) * P (4 + -1x2 + (-4x + x3)) + 2(x + -1)(x + 2) = (x + -1) * P 重新排序条件: (4 + -4x + -1x2 + x3) + 2(x + -1)(x + 2) = (x + -1) * P (4 + -4x + -1x2 + x3) + 2(x + -1)(x + 2) = (x + -1) * P 重新排序条件: 4 + -4x + -1x2 + x3 + 2(-1 + x)(x + 2) = (x + -1) * P 重新排序条件: 4 + -4x + -1x2 + x3 + 2(-1 + x)(2 + x) = (x + -1) * P 乘以 (-1 + x) * (2 + x) 4 + -4x + -1x2 + x3 + 2(-1(2 + x) + x(2 + x)) = (x + -1) * P 4 + -4x + -1x2 + x3 + 2((2 * -1 + x * -1) + x(2 + x)) = (x + -1) * P 4 + -4x + -1x2 + x3 + 2((-2 + -1x) + x(2 + x)) = (x + -1) * P 4 + -4x + -1x2 + x3 + 2(-2 + -1x + (2 * x + x * x)) = (x + -1) * P 4 + -4x + -1x2 + x3 + 2(-2 + -1x + (2x + x2)) = (x + -1) * P 结合相似条件: -1x + 2x = 1x 4 + -4x + -1x2 + x3 + 2(-2 + 1x + x2) = (x + -1) * P 4 + -4x + -1x2 + x3 + (-2 * 2 + 1x * 2 + x2 * 2) = (x + -1) * P 4 + -4x + -1x2 + x3 + (-4 + 2x + 2x2) = (x + -1) * P 重新排序条件: 4 + -4 + -4x + 2x + -1x2 + 2x2 + x3 = (x + -1) * P 结合相似条件: 4 + -4 = 0 0 + -4x + 2x + -1x2 + 2x2 + x3 = (x + -1) * P -4x + 2x + -1x2 + 2x2 + x3 = (x + -1) * P 结合相似条件: -4x + 2x = -2x -2x + -1x2 + 2x2 + x3 = (x + -1) * P 结合相似条件: -1x2 + 2x2 = 1x2 -2x + 1x2 + x3 = (x + -1) * P 重新排序条件: -2x + 1x2 + x3 = (-1 + x) * P 重新排列条件以便更容易乘法解决: -2x + 1x2 + x3 = P(-1 + x) -2x + 1x2 + x3 = (-1 * P + x * P) -2x + 1x2 + x3 = (-1P + xP) 解: -2x + 1x2 + x3 = -1P + xP 求解变量 'x'. 重新排序条件: P + -2x + -1xP + 1x2 + x3 = -1P + xP + P + -1xP 重新排序条件: P + -2x + -1xP + 1x2 + x3 = -1P + P + xP + -1xP 结合相似条件: -1P + P = 0 P + -2x + -1xP + 1x2 + x3 = 0 + xP + -1xP P + -2x + -1xP + 1x2 + x3 = xP + -1xP 结合相似条件: xP + -1xP = 0 P + -2x + -1xP + 1x2 + x3 = 0 无法确定此方程的解.
.
条评论